Equivalent birational embedding IV: reduced varieties

نویسندگان

چکیده

Abstract Two reduced projective schemes are said to be Cremona equivalent if there is a map that maps one in the other. In this paper I revise some of known results about equivalence and extend main result Mella Polastri (Bull Lond Math Soc 41(1):89–93, 2009) [20] reducible schemes. This allows prove very general contractibility for union rational subvarieties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent Birational Embeddings Ii: Divisors

Two divisors in Pn are said to be Cremona equivalent if there is a Cremona modification sending one to the other. We produce infinitely many non equivalent divisorial embeddings of any variety of dimension at most 14. Then we study the special case of plane curves and rational hypersurfaces. For the latter we characterise surfaces Cremona equivalent to a plane, under a mild assumption. Introduc...

متن کامل

Secant Varieties and Birational Geometry

We show how to use information about the equations defining secant varieties to smooth projective varieties in order to construct a natural collection of birational transformations. These were first constructed as flips in the case of curves by M. Thaddeus via Geometric Invariant Theory, and the first flip in the sequence was constructed by the author for varieties of arbitrary dimension in an ...

متن کامل

Birational geometry of defective varieties

Here we investigate the birational geometry of projective varieties of arbitrary dimension having defective higher secant varieties. We apply the classical tool of tangential projections and we determine natural conditions for uniruledness, rational connectivity, and rationality. AMS Subject Classification: 14N05.

متن کامل

Birational invariants of algebraic varieties

We extend the notion of Iitaka dimension of a line bundle, and deene a family of dimensions indexed by weights, for vector bundles of arbitrary ranks on complex varieties. In the case of the cotangent bundle, we get a family of birational invariants, including the Kodaira dimension and the cotangent genus introduced by Sakai. We treat in detail several classes of examples, such as complete inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti Del Circolo Matematico Di Palermo

سال: 2023

ISSN: ['1973-4409', '0009-725X']

DOI: https://doi.org/10.1007/s12215-023-00924-1